
46

Communication between digital circuits in SoCs – a

new master lecture

Lukas Mennicke, Heinz Endres

University of Applied Sciences Würzburg-Schweinfurt

D-97421 Schweinfurt, Ignaz-Schön-Str. 11, Germany

lukas.mennicke@student.fhws.de, heinz.endres@fhws.de

Abstract – Today we have lots of chip-systems in our lives.

E.g. the processor in a modern smartphone consists of

multiple CPU cores and peripherals on the same die. These

complex chips are called System-on-Chips (SoCs). For

digital circuits, which aim for clock frequencies of a couple

of 100 MHz, the distance between the electrical circuits is

very important. If there are different systems on the same

chip, the communication between them is even more

challenging. The paper will outline a method for the data

transmission between the independently parts of a SoC.

In order to prepare students for the upcoming and current

trend towards SoCs, a new master lecture is planned based

on a Xilinx SoC with a corresponding development kit

called “Zedboard”. It has lots of peripherals, e.g. a HDMI-

Interface and an Oled-Display. In the center of the board

stand the Zynq-7000 SoC, which contains two CPU cores

and a huge field-programmable-gate-array (FPGA).

I. INTRODUCTION

The Advanced Microcontroller Bus Architecture
(AMBA) was developed by the British company ARM
Limited. It is an open standard for the communication
between independent parts of SoCs. The Advanced
extensible Interface (AXI) is the most widely used
interface of the AMBA. [1]

The AXI interface is based on the master and slave
communication principle and works in the full-duplex-
mode. At the same time, data can be sent and received.
The AXI interface has two kind of types: AXI-full and
AXI-lite. The lite is a simplified protocol version. It only
utilizes the necessary control signals, it is easier to
understand and saves area on the chip. The disadvantage
is the missing burst mode. A burst mode is a data
transmission that comprises several data words without
initializing them separately. E.g. only the initial address of
the first data word is transmitted, and for all following
data words the memory address is incremented
automatically.

The following section explains the communication
between the CPU as master and FPGA as slave using an
AXI-lite interface.

II. ILLUSTRATIVE OPERATION OF THE AXI INTERFACE

The AXI interface is responsible for data transmission
between two function blocks. These blocks can be two
separate circuits on a FPGA, or a CPU and a FPGA.
Figure 1 schematically illustrates data transfer between the
master (CPU) and the slave (FPGA) on a Zynq-7000 SoC.

CPU and FPGA parts are optically separated by a
dashed line. Since the CPU acts as master, all data transfer
requests are made by the CPU. As shown in Figure 1, the
CPU memory space consists of three parts: RAM, PL
(Programmable Logic), and IO peripherals, each having
different base addresses. For the initialization of a
transmission, only the PL (MAXI_GP0) register is read or
written from the CPU point of view. MAXI_GP0 stands
for Master AXI general purpose 0 register. However, in
this area, there are no memory cells, such as a RAM
memory. Address and data are directly passed to a module
called "Master Interconnect for Slave Peripherals". This
module serves as a "bridge station" between CPU and
FPGA. It is responsible for the necessary handshakes and
control signals.

Figure 1. Schematic representation of the data transfer using the AXI

interface between CPU and FPGA

The registers in the address area of the PL
(MAXI_GP0) are physically located on the FPGA, but
virtually on the CPU. From the viewpoint of the CPU, no
difference is noticed - whether data is transferred between
RAM or FPGA registers.

mailto:lukas.mennicke@student.fhws.de

47

III. STRUCTURE OF THE AXI-LITE INTERFACE WITH

ALL REQUIRED CONTROL SIGNALS

The internal construction of the CPU understands if the
address for the next memory operation is in the address
range of the FPGA and will automatically contact the
Master Interconnect for Slave Peripherals.

This block is responsible for the handshake signals of
the AXI interface. Table 1 lists all the signals needed for a
data exchange. All signals in lower-case are generated by
the slave (FPGA), all others preceded by a "S_" by the
master (CPU).

The signals "valid" and "ready" always serve as a
handshake to transfer the data in the same category
without errors. In total, there are six categories: In order to
write data to a FPGA register, "write address", "write
data" and "write validation" are required. To read an
FPGA register, "read address" and "read data" are used.
The global signals are necessary for both actions.

The global signal S_ACLK is the clock signal. A
100MHz clock is standardly used on the Zedboard.
However, since the AXI interface protocol has no
frequency limit, other frequencies are possible. The
maximum transmission rate depends on the hardware
specification. S_ARESETN is used to reset the bus. The
remaining signals and their meanings will be explained in
the next chapter.

IV. CPU WRITES TO THE FPGA

First, the CPU needs to initialize a write operation. In
the following example the hexadecimal value 0x64 will be
assigned to the address 0x43C00000. The C code looks
like this:

(u32 *)0x43C00000 = 0x64;

The CPU sends the operation command to the "Master
Interconnect for Slave Peripherals". It is responsible for
the generation of the control signals and the correct
transmission sequence. For writing to a PL-register "write
address", "write data", and "write validation" categories
from Table 1 are necessary.

The bubbles in Figure 2 show the four states of a
transmission. The control signals at the arrows are the
conditions to reach the next state. They are all one bit
wide. As shown in Figure 3, all signals are set to ‘0’ at the
beginning of a transmission (state "bus inactive"). To
initiate a writing operation, we need four signals: awready,

S_AWVALID, wready and S_WVALID. The signals
awready and wready are generated by the slave (written in
lower-case letters). Awready "low" signals the master that
the slave is ready for address transmission. Wready "low"
indicates that the slave is ready to transmit the data.

Figure 2. The Moore machine describes the control signals, if the CPU

writes data to the FPGA

Figure 3. Timing chart for a single data write operation from the CPU

to the FPGA [3]

The slave is automatically ready if the bus is inactive
and waits for commands from the master. The master
applies the address (0x43C00000) to the bus line
S_AWADDR. This 32 bit wide signal is responsible for
address transmission during a write operation. At the same
time, the signal S_AWVALID is set to "high", which
validates the address. The data is handled in a very similar
way. The master applies the data (0x00000064) to the bus
line S_WDATA and displays the validity for the slave
using the S_WVALID signal. S_WSTRB is set in the
same time step. This signal will be discussed in more

TABLE I.
SIGNALS OF THE AXI-LITE-INTERFACE [2]

global read address read data

S_ACLK S_ARVALD rvalid

S_ARESETN arready S_READY

 S_ARADDR rdata

 rresp

write address write data write validation

S_AWVALID S_WVALID bvalid

awready wready S_BREADY

S_AWADDR S_WDATA bresp

 S_WSTRB

48

detail later. Finally, the master state machine switches to
"start of transmission" (see Figure 2). It sets the signal
S_BREADY to "high", and waits for a response from the
slave.

Next, the slave needs to read the address and the data
from the bus. The signal S_WSTRB is 0xF, so the
complete data (0x00000064) is stored in the register with
the address 0x43C00000.

Figure 4. Structure of the S_WSTRB signal

Figure 4 shows the structure of the S_WSTRB signal,
which is used for the memory operation. For a 32 bit wide
data bus, it is 4 bit wide and responsible for validating the
data. With the help of the S_WSTRB signal, single bytes
can be transferred to a register. If the signal is 0xF, all four
bytes are stored in the FPGA register. For a value of 0x9,
the data bits of D[31:24] and D[07:00] are transferred to
the register, and D[23:08] remains unchanged. Each bit of
signal S_WSTRB tells the slave whether the
corresponding byte of the data is to be stored or discarded.

The slave has now transferred the value 0x00000064 to
its own register 0x43C00000. It signals with awready or
wready, that the address or data was received,
respectively. Now the FSM reached the state "save bus
data" in Figure 2. Finally, the status of the transmission is
transmitted to the master before the state of the bus is
reseted.

The slave recognized by the S_BREADY signal, that
the master is ready for a status transfer. Table 2 lists the
different possibilities of a transfer. When a FPGA register
is written, bresp signals the status of the transfer, the rresp
signal is responsible for a read operation.

There are four options: OKAY (0b00) stands for a
perfect transfer with no errors. EXOKAY (0b01) is only
used for exclusive transmissions. These are not integrated
in the AXI-lite interface and are mentioned here only for
the sake of completeness. SLVERR (0b10) stands for
"Slave Error". This error is thrown when the master has
sent a data transfer request to the slave, but an error has
occurred with it. DECERR (0b11) is the abbreviation for
"Decode error". This error occurs when the master wants
to interfere an address that has not been assigned to a
slave. [4]

The bvalid signal indicates to the master that a valid
bresp signal is present. In Figure 3, the timing chart, the
bresp signal is 0b00, which indicates a successful transfer.
This corresponds to the FSM state "status report of
transmission" in Figure 2. Finally, all signals are set to
"low" and the bus reached the inactive state again. The
slave waits for a new request from the master.

V. CPU READS FROM THE FPGA

The read operation must be initialized by the CPU
(master). In the previous chapter the value 0x64 was
transferred to the register 0x43C00000. Now the register
will be read from the CPU. In the C code, the read
operation would look as follows:

u32 registerContent = (u32 *)0x43C00000;

The content of the register 0x43C00000 is assigned to
the variable registerContent. The CPU sends the operation
command to the "Master Interconnect for Slave
Peripherals". It is responsible for the generation of the
control signals and the sequence of the transmission. For
writing to a PL-register, "read address" and "read data"
categories from Table 1 are necessary.

Figure 5. The Moore machine describes the control signals, if the CPU

reads data from the FPGA

Figure 5 shows the sequence of a read operation of the
FPGA register. First, the master is in the state of bus
inactivity. All channels are "low". As in the previous
example, all signals produced by the slave are lowercase.
With arready "low" the slave signals that it is ready for an
address transfer. While the bus is inactive, the slave waits
for instructions of the master. The timing chart in Figure 6
shows the exact sequence of a read operation. To
initialize, the master specifies the address of the register to
be read to the bus S_ARADDR. Simultaneously, the
signal S_ARVALID is set to "high". It indicates the slave,
that the address is valid. With the S_RREADY signal the
master indicates that it is ready for receiving the data and

TABLE II.
CODING OF THE BRESP AND RRESP SIGNAL [4]

rresp [1:0]

bresp [1:0]
status

0b00 OKAY

0b01 EXOKAY

0b10 SLVERR

0b11 DECERR

49

the status of the transmission. Now, the state "start of
transmission" in Figure 5 is reached. The master puts all
necessary data on the bus and waits for the slave to
respond.

Figure 6. Timing chart for a single data read operation [5]

In the first step, the slave receives the address of the
register to be read. To receive no further addresses,
arready set to "high". In Figure 5, the instantaneous state
is "received address".

As shown in the timing chart, the data of the register
(0x43C00000) will be put on the bus in the next clock
period The data channel rdata is assigned the value
0x00000064. This corresponds to the value that was
written in the previous chapter in the register. At the same
time, the status of data transmission is passed to the
master with the signal rresp. This signal is equivalent to
the signal bresp of the write operation and is described in
detail in the previous chapter. There are no changes at the
signal rresp in the timing chart, because 0b00 stand for
"OKAY" - a successful transfer. Rvalid confirms the
master that the two signals rdata and rresp are valid. Now
the state "valid data + status report of transmission" is
reached (see Figure 5).

The "Master interconnect for Slave Peripherals"
receives the value of the register and outputs the data to
the CPU. In the final step, all channels are set to "low".
The bus returns to the idle-state and the slave waits until a
new read request is send from the master.

VI. CONCLUSION

In modern systems with high performance demands a
single processor core alone is usually insufficient. For
example, complex graphical calculations require a
separate Graphics Processing Unit (GPU). This paper
outlines the ARM AXI interface, which allows a high-
speed data transmission between a CPU and independent
digital circuits. These high-speed communication systems
are the key for modern System-on-Chip (SoC)
architectures.

REFERENCES

[1] AMBA Specifications,

http://www.arm.com/products/system-ip/amba-specifications.php,

accessing 2016-04-26

[2] AMBA AXI and ACE Protocol Specification, S122 (2011)

[3] Figure based on LogiCORE IP AXI4-Lite IPIF v2.0,

S24 (2013)

[4] AMBA AXI and ACE Protocol Specification, S54 (2011)

[5] Figure based on LogiCORE IP AXI4-Lite IPIF v2.0,

S23 (2013)

http://www.arm.com/products/system-ip/amba-specifications.php

