
50

It’s Time for Unums – an Alternative

to IEEE 754 Floats and Doubles

Thomas Risse

Institute of Informatics and Automation
Hochschule Bremen, City University of Applied Sciences, Germany

e-mail risse@hs-bremen.de

Abstract—In the eighties of the last century standardization

of representation of and arithmetic with floating point

numbers by IEEE 754 promised a reliable and efficient way

to handle scientific computing independently of the hard-

ware. However, IEEE 754 implied lots of numerical

anomalies which seemingly had to be accepted fatefully.

Now, Unums constitute a self-descriptive representation of

floating point numbers which is closed under the basic

arithmetic operations, which ends rounding errors and

which allows for efficient scientific computing taking into

consideration todays technological preconditions.

I. INTRODUCTION

In the eighties of the last century it was a milestone to
standardize representation of and arithmetic with floating
point numbers. With the standard IEEE 754 of 1985,
amended 2008 computation with floating point numbers,
i.e. any scientific computation, should no longer be
dependent on a specific hardware. However, IEEE 754
implies lots of numerical anomalies; it hides inaccuracies
by rounding and truncation as well as underflow and
overflow; it presumes given numbers of bits for mantissa
and exponent in fixed formats.

Now, Unums [2] cover the whole real line [−∞, ∞] by
alternating between exact (rational) numbers and open
intervals of reals between these exact numbers.
Thus, firstly, rounding, underflow, overflow are avoided.
Secondly, a clever application of interval arithmetic
together with built in operations like an exact dot product
render every mathematical operation on Unums provably
true.
Thirdly, Unums with varying numbers of bits for the
mantissa and for the exponent on average require less
memory space and bus bandwidth. Fixed format
representation of Unums in 64 bit registers allow for fast
arithmetic operations on Unums.
Lastly, with Unums different algorithms for typical
numerical problems can be designed which can utilize the
multitude of available floating point processors in parallel.

II. IEEE 754 AND ITS DEFICIENCIES

Mathematical properties of basic operations in the field of

rational numbers like associativity (−1016 + 1016) +
1 = 1 ≠ 0 = −1016 + 1016 = −1016 + (1016 + 1) or

distributivity are no longer guaranteed when computing

with IEEE 754 floating point numbers. This is maybe the

severest deficiency because it prevents simplest parallel-

ization. But there are more deficiencies that come with

IEEE 754.

A. IEEE 754 computations are not trustworthy!

There is no indication whether or not a computation
with IEEE 754 is exact even if all arguments are. E.g. 1
and 10 are integers which in IEEE 754 are represented

exactly, but
1

10
 has a periodic binary representation and

thus cannot be represented exactly with finite many bits.
There is no indication whether some operation yields an
exact result or not. IEEE 754 computations may violate
mathematical laws like associativity or distributivity. With
IEEE 754 floats 𝑎 + 𝑏 == 𝑎 not necessarily implies 𝑏 =
= 0 but |𝑏| ≪ |𝑎| only.

B. Underflow and Overflow

Without notice, numbers greater than the biggest
representable rational number, maxreal are represented
by plus infinity, numbers smaller than –maxreal by minus
infinity. Similarly, non-zero numbers very close to zero,
i.e. those in (-smallestsubnormal,smallestsubnormal)
are represented by zero, again without notice.

C. Fixed Number of Bits for Mantissa and Exponent

Independent of the requirements of a problem IEEE 754
specifies the number of bits for mantissa and exponent for
e.g. single precision (floats in four bytes) and double
precision (doubles in eight bytes) floating point numbers.
(To be on the safe side usually formats with too many bits
are chosen. Also, NaN has wastefully many representati-
ons in IEEE 754.) All these formats have been specified
quite arbitrarily. There is no way to let the computer
adjust these numbers dynamically.

D. Cancellation, Truncation, Rounding

Because cancellation the function evaluations of
𝑓(𝑥) = (𝑥 − 1)𝑛 and the mathematically identical

𝑔(𝑥) = ∑ (
𝑛
𝑘

) (−1)𝑛−𝑘𝑥𝑘𝑛
𝑘=0 differ significantly for

arguments close to 1.
For example, computing iterated square roots of 2 will

eventually lead to √2
2𝑛

= 1.
There are quite lot examples where errors caused by IEEE
754 arithmetic had catastrophic consequences [1], [2].

E. Anomalies

There is an abundance of anomalies occurring when
doing arithmetic with IEEE 754 floats: absurd erroneous
solutions to ill conditioned linear equations (Bailey’s
nightmare in [2]), evaluating multivariate functions
(Rumps royal pain in [2] or Kahans examples in [2]),
ignoring discontinuities (Kahan’s smooth surprise in [2]),
or divergence instead of convergence to some fix-point of

mailto:risse@hs-bremen.de

51

a recursive sequence. To give only one example, define

𝐻(𝑥) = 𝐸(𝑄(𝑥)2) with 𝐸(𝑧) =
𝑒𝑧−1

𝑧
 where 𝐸(0): = 1

and 𝑄(𝑦) = |𝑥 − √𝑥2 + 1| −
1

𝑥+√𝑥2+1
 . Then for IEEE

754 floats, doubles and even extended doubles with 128
bits 𝐻(𝑥⃑) for 𝑥⃑ = (15.0,16.0,17.0,9999.0) returns
(0,0,0,0) whereas the correct result is (1,1,1,1).

III. UNUMS

As IEEE 754 Unums represent some rationals 𝑟 by the
combination of sign, biased exponent and mantissa, called
fraction: 𝑟 = ±𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 . In addition to these
three fields there is the so called ubit indicating whether
the number is exact or whether it represents the open
interval (𝑟, 𝑟 + 𝑢𝑙𝑝) where 𝑢𝑙𝑝 is the Unit in the Last
Place, i.e. the difference between r and the next bigger
exactly representable Unum. So Unums are either exact or
open real intervals. E.g. (maxreal, ∞) is just maxreal
with the ubit set and ±∞ are represented by their IEEE
754 equivalents. So Unums cover [−∞, ∞] ⊃ ℝ. By the
way, with Unums there are only two representations of
NaN, quiet and signaling, instead of about 224 =
24(210)2 ≈ 16(103)2 = 16 ∙ 106 in case of IEEE 754
floats and 253 = 8(210)5 ≈ 8(103)5 = 8 ∙ 1015 in case of
IEEE 754 doubles by allowing for any sign and mantissa.

Define Ubounds to be either inexact Unums or pairs of
Unums. Then the set of Ubounds obviously is closed
under addition, subtraction, multiplications and division.

At last, adding two more fields esizesize and fsizesize
allows to specify the number of exponent bits and the
number of fraction bits. (The length of these two additi-
onal fields is fixed within a so called environment.) These
two fields render the format of Unums variable and self-
descriptive. This variable length format (like strings)
allows for efficient storage and transport. In the processor,
Unums are unpacked into fixed length 64bit registers with
fast arithmetic. So, Unums take today’s technological con-
straints into consideration: compared to the technology of
the 1980s, nowadays to transport data takes much more
energy than to do floating point arithmetic [2]:

Operation Energy Time

64 bit multiply-add 200 pJ 1 nsec

Read 64 bit from cache 800 pJ 3 nsec

Move 64 bit across chip 2000 pJ 5 nsec

Execute an instruction 7500 pJ 1 nsec

Read 64 bits from DRAM 12000 pJ 70 nsec

It shows that the memory savings more than compensate
for the overhead consisting of ubit, esizesize and fsizesize.

IV. FUSED OPERATIONS, MATH LIBRARY

There are built-in functions to compute 𝑥𝑦 (which is an
algebraic function for any rational 𝑦, i.e. for any Unum 𝑦),
or to compute the dot product exactly (guaranteeing
associativity of addition), to compute products
(guaranteeing associativity of multiplication) and the like.
And, there is a math library, e.g. for all elementary mathe-
matical functions and their inverses.

V. UBOXES AND ALGORITHMS WITH UNUMS

So called Uboxes are 𝑛-tupels of Unums, i.e. hyper-
cuboids in some 𝑛-dimensional solution space. We are
looking for the smallest set of uboxes which solve a given
problem. Corresponding methods are declarative – similar
to inclusion/exclusion, region growing, lumping, grid
refinement, etc. – and cope [2] with problems like

 finite integrals (quadrature),

 (linear) equations with exact and inexact
coefficients,

 evaluation of polynomials; computation of
zeroes, extreme points and fix points,

 computation of location of a physical pendu-
lum where 𝑣 = 𝑣(𝜗), 𝑎 = 𝑎(𝜗), 𝑡 = 𝑡(𝜗),

 two- and many-body-problems,

 inverse kinematic [4]

 mass-spring-systems, trusses, FFT, CFD etc.

Advantages in each case are exact results or guaranteed
intervals and (data) parallelism to be exploited.

For example, in Kahans smooth surprise Unums reveal

that 𝑓(𝑥) =
1

80
log|3(1 − 𝑥) + 1| + 𝑥2 + 1 has a pole in

4

3

because of 𝑓 ((
4

3
− 𝑢𝑙𝑝,

1165

87
)) = [−∞,

175

64
). In another

example, consider 𝑓(𝑥) = 2𝑥 −
𝑥2

𝐿
 for, e.g. 𝐿 = 77. Then,

using even very coarse Unums shows the fix point 𝐿 = 77
to lie in (73,81). For more examples see e.g. [2] and [6].

VI. CONCLUSION

Unums seem to be a viable alternative to IEEE 754
floating point numbers. To use Unums guarantees mathe-
matical laws like associativity and distributivity. Results
are provable true. Further, using Unums reduces memory
and bandwidth requirements. Also, there are algorithms
with Unums which are easily parallelizable. All this can
be checked using the open source MATHEMATICA
library written by J. Gustafson, to be downloaded from
www.crcpress.com/The-End-of-Error-Unum-Computing/
Gustafson/p/book/9781482239867, the website of [2].

Maybe as a result of a dispute between Gustafson [3]
and Kahan [5], Gustafson [4] proposes a new format, set
of real numbers, SORN, which no longer extends IEEE
754 but renders that outdated standard obsolete.

REFERENCES

[1] D. Bailey: Numerical reproducibility in high-performance compu-
ting, November 2015 http://www.davidhbailey.com/dhbtalks/dhb-
num-repro.pdf

[2] J. Gustafson: The End of Error – Unum Computing, CRC Press
2015

[3] J. Gustafson: The Great Debate – Unum Arithmetic Position
Statement; 23rd IEEE Symposium on Computer Arithmetic, 2016
http://arith23.gforge.inria.fr/slides/Gustafson.pdf

[4] J. Gustafson: A Radical Approach to Computation with Real
Numbers; 2016 www.johngustafson.net/pubs/Radical
Approach.pdf

[5] W. Kahan: A critique of John L. Gustafson’s The End of Error –
Unum Computation and his Radical Approach to Computation
with Real Numbers; 23rd IEEE Symposium on Computer
Arithmetic, 2016 http://arith23.gforge.inria.fr/slides/Kahan.pdf

[6] Th. Risse: Unums; No 142, 146 of http://www.weblearn.hs-
bremen.de/risse/papers/papers.htm

http://www.crcpress.com/The-End-of-Error-Unum-Computing/%20Gustafson/p/book/9781482239867
http://www.crcpress.com/The-End-of-Error-Unum-Computing/%20Gustafson/p/book/9781482239867
http://www.davidhbailey.com/dhbtalks/dhb-num-repro.pdf
http://www.davidhbailey.com/dhbtalks/dhb-num-repro.pdf
http://arith23.gforge.inria.fr/slides/Gustafson.pdf
http://www.johngustafson.net/pubs/Radical%20Approach.pdf
http://www.johngustafson.net/pubs/Radical%20Approach.pdf
http://arith23.gforge.inria.fr/slides/Kahan.pdf
http://www.weblearn.hs-bremen.de/risse/papers/papers.htm
http://www.weblearn.hs-bremen.de/risse/papers/papers.htm

