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Abstract—In the eighties of the last century standardization 

of representation of and arithmetic with floating point 

numbers by IEEE 754 promised a reliable and efficient way 

to handle scientific computing independently of the hard-

ware. However, IEEE 754 implied lots of numerical 

anomalies which seemingly had to be accepted fatefully. 

Now, Unums constitute a self-descriptive representation of 

floating point numbers which is closed under the basic 

arithmetic operations, which ends rounding errors and 

which allows for efficient scientific computing taking into 

consideration todays technological preconditions.  

I. INTRODUCTION 

In the eighties of the last century it was a milestone to 
standardize representation of and arithmetic with floating 
point numbers. With the standard IEEE 754 of 1985, 
amended 2008 computation with floating point numbers, 
i.e. any scientific computation, should no longer be 
dependent on a specific hardware. However, IEEE 754 
implies lots of numerical anomalies; it hides inaccuracies 
by rounding and truncation as well as underflow and 
overflow; it presumes given numbers of bits for mantissa 
and exponent in fixed formats.  

Now, Unums [2] cover the whole real line [−∞, ∞] by 
alternating between exact (rational) numbers and open 
intervals of reals between these exact numbers. 
Thus, firstly, rounding, underflow, overflow are avoided. 
Secondly, a clever application of interval arithmetic 
together with built in operations like an exact dot product 
render every mathematical operation on Unums provably 
true.  
Thirdly, Unums with varying numbers of bits for the 
mantissa and for the exponent on average require less 
memory space and bus bandwidth. Fixed format 
representation of Unums in 64 bit registers allow for fast 
arithmetic operations on Unums.  
Lastly, with Unums different algorithms for typical 
numerical problems can be designed which can utilize the 
multitude of available floating point processors in parallel.  

II. IEEE 754 AND ITS DEFICIENCIES  

Mathematical properties of basic operations in the field of 

rational numbers like associativity (−1016 + 1016) +
1 = 1 ≠ 0 =  −1016 + 1016 =  −1016 + (1016 + 1) or 

distributivity are no longer guaranteed when computing 

with IEEE 754 floating point numbers. This is maybe the 

severest deficiency because it prevents simplest parallel-

ization. But there are more deficiencies that come with 

IEEE 754.  

A. IEEE 754 computations are not trustworthy!  

There is no indication whether or not a computation 
with IEEE 754 is exact even if all arguments are. E.g. 1 
and 10 are integers which in IEEE 754 are represented 

exactly, but 
1

10
 has a periodic binary representation and 

thus cannot be represented exactly with finite many bits. 
There is no indication whether some operation yields an 
exact result or not. IEEE 754 computations may violate 
mathematical laws like associativity or distributivity. With 
IEEE 754 floats 𝑎 + 𝑏 == 𝑎 not necessarily implies 𝑏 =
= 0 but |𝑏| ≪ |𝑎| only.  

B. Underflow and Overflow  

Without notice, numbers greater than the biggest 
representable rational number, maxreal are represented 
by plus infinity, numbers smaller than –maxreal by minus 
infinity. Similarly, non-zero numbers very close to zero, 
i.e. those in (-smallestsubnormal,smallestsubnormal) 
are represented by zero, again without notice.  

C. Fixed Number of Bits for Mantissa and Exponent  

Independent of the requirements of a problem IEEE 754 
specifies the number of bits for mantissa and exponent for 
e.g. single precision (floats in four bytes) and double 
precision (doubles in eight bytes) floating point numbers. 
(To be on the safe side usually formats with too many bits 
are chosen. Also, NaN has wastefully many representati-
ons in IEEE 754.) All these formats have been specified 
quite arbitrarily. There is no way to let the computer 
adjust these numbers dynamically.  

D. Cancellation, Truncation, Rounding 

Because cancellation the function evaluations of 
𝑓(𝑥) = (𝑥 − 1)𝑛 and the mathematically identical 

𝑔(𝑥) = ∑ (
𝑛
𝑘

) (−1)𝑛−𝑘𝑥𝑘𝑛
𝑘=0  differ significantly for 

arguments close to 1.   
For example, computing iterated square roots of 2 will 

eventually lead to √2
2𝑛

= 1.   
There are quite lot examples where errors caused by IEEE 
754 arithmetic had catastrophic consequences [1], [2].  

E. Anomalies  

There is an abundance of anomalies occurring when 
doing arithmetic with IEEE 754 floats: absurd erroneous 
solutions to ill conditioned linear equations (Bailey’s 
nightmare in [2]), evaluating multivariate functions 
(Rumps royal pain in [2] or Kahans examples in [2]), 
ignoring discontinuities (Kahan’s smooth surprise in [2]), 
or divergence instead of convergence to some fix-point of 
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a recursive sequence. To give only one example, define 

𝐻(𝑥) = 𝐸(𝑄(𝑥)2) with 𝐸(𝑧) =
𝑒𝑧−1

𝑧
 where 𝐸(0): = 1 

and 𝑄(𝑦) = |𝑥 − √𝑥2 + 1| −
1

𝑥+√𝑥2+1
 . Then for IEEE 

754 floats, doubles and even extended doubles with 128 
bits 𝐻(𝑥⃑) for 𝑥⃑ = (15.0,16.0,17.0,9999.0) returns 
(0,0,0,0) whereas the correct result is (1,1,1,1).  

III. UNUMS 

As IEEE 754 Unums represent some rationals 𝑟 by the 
combination of sign, biased exponent and mantissa, called 
fraction: 𝑟 = ±𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 . In addition to these 
three fields there is the so called ubit indicating whether 
the number is exact or whether it represents the open 
interval (𝑟, 𝑟 + 𝑢𝑙𝑝) where 𝑢𝑙𝑝 is the Unit in the Last 
Place, i.e. the difference between r and the next bigger 
exactly representable Unum. So Unums are either exact or 
open real intervals. E.g. (maxreal, ∞) is just maxreal 
with the ubit set and ±∞ are represented by their IEEE 
754 equivalents. So Unums cover [−∞, ∞] ⊃ ℝ.  By the 
way, with Unums there are only two representations of 
NaN, quiet and signaling, instead of about 224 =
24(210)2 ≈ 16(103)2 = 16 ∙ 106 in case of IEEE 754 
floats and 253 = 8(210)5 ≈ 8(103)5 = 8 ∙ 1015 in case of 
IEEE 754 doubles by allowing for any sign and mantissa.  

Define Ubounds to be either inexact Unums or pairs of 
Unums. Then the set of Ubounds obviously is closed 
under addition, subtraction, multiplications and division.  

At last, adding two more fields esizesize and fsizesize 
allows to specify the number of exponent bits and the 
number of fraction bits. (The length of these two additi-
onal fields is fixed within a so called environment.) These 
two fields render the format of Unums variable and self-
descriptive. This variable length format (like strings) 
allows for efficient storage and transport. In the processor, 
Unums are unpacked into fixed length 64bit registers with 
fast arithmetic. So, Unums take today’s technological con-
straints into consideration: compared to the technology of 
the 1980s, nowadays to transport data takes much more 
energy than to do floating point arithmetic [2]:  

 

Operation  Energy  Time 

64 bit multiply-add  200 pJ  1 nsec  

Read 64 bit from cache  800 pJ  3 nsec  

Move 64 bit across chip  2000 pJ  5 nsec  

Execute an instruction  7500 pJ  1 nsec  

Read 64 bits from DRAM  12000 pJ  70 nsec  

 

It shows that the memory savings more than compensate 
for the overhead consisting of ubit, esizesize and fsizesize.  

IV. FUSED OPERATIONS, MATH LIBRARY  

There are built-in functions to compute 𝑥𝑦 (which is an 
algebraic function for any rational 𝑦, i.e. for any Unum 𝑦), 
or to compute the dot product exactly (guaranteeing 
associativity of addition), to compute products 
(guaranteeing associativity of multiplication) and the like. 
And, there is a math library, e.g. for all elementary mathe-
matical functions and their inverses.  

V. UBOXES AND ALGORITHMS WITH UNUMS  

So called Uboxes are 𝑛-tupels of Unums, i.e. hyper-
cuboids in some 𝑛-dimensional solution space. We are 
looking for the smallest set of uboxes which solve a given 
problem. Corresponding methods are declarative – similar 
to inclusion/exclusion, region growing, lumping, grid 
refinement, etc. – and cope [2] with problems like  

 finite integrals (quadrature),  

 (linear) equations with exact and inexact 
coefficients,  

 evaluation of polynomials; computation of 
zeroes, extreme points and fix points,  

 computation of location of a physical pendu-
lum where 𝑣 = 𝑣(𝜗), 𝑎 = 𝑎(𝜗), 𝑡 = 𝑡(𝜗),  

 two- and many-body-problems,  

 inverse kinematic [4]  

 mass-spring-systems, trusses, FFT, CFD etc.  

Advantages in each case are exact results or guaranteed 
intervals and (data) parallelism to be exploited.  

For example, in Kahans smooth surprise Unums reveal 

that 𝑓(𝑥) =
1

80
log|3(1 − 𝑥) + 1| + 𝑥2 + 1 has a pole in 

4

3
 

because of 𝑓 ((
4

3
− 𝑢𝑙𝑝,

1165

87
)) = [−∞,

175

64
). In another 

example, consider 𝑓(𝑥) = 2𝑥 −
𝑥2

𝐿
 for, e.g. 𝐿 = 77. Then, 

using even very coarse Unums shows the fix point 𝐿 = 77 
to lie in (73,81). For more examples see e.g. [2] and [6].  

VI. CONCLUSION  

Unums seem to be a viable alternative to IEEE 754 
floating point numbers. To use Unums guarantees mathe-
matical laws like associativity and distributivity. Results 
are provable true. Further, using Unums reduces memory 
and bandwidth requirements. Also, there are algorithms 
with Unums which are easily parallelizable. All this can 
be checked using the open source MATHEMATICA 
library written by J. Gustafson, to be downloaded from 
www.crcpress.com/The-End-of-Error-Unum-Computing/ 
Gustafson/p/book/9781482239867, the website of [2].  

Maybe as a result of a dispute between Gustafson [3] 
and Kahan [5], Gustafson [4] proposes a new format, set 
of real numbers, SORN, which no longer extends IEEE 
754 but renders that outdated standard obsolete.  
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