
46 

 

Communication between digital circuits in SoCs – a 

new master lecture 
 

Lukas Mennicke, Heinz Endres 

University of Applied Sciences Würzburg-Schweinfurt 

D-97421 Schweinfurt, Ignaz-Schön-Str. 11, Germany 

lukas.mennicke@student.fhws.de, heinz.endres@fhws.de 

 

 
Abstract – Today we have lots of chip-systems in our lives. 

E.g. the processor in a modern smartphone consists of 

multiple CPU cores and peripherals on the same die. These 

complex chips are called System-on-Chips (SoCs). For 

digital circuits, which aim for clock frequencies of a couple 

of 100 MHz, the distance between the electrical circuits is 

very important. If there are different systems on the same 

chip, the communication between them is even more 

challenging.  The paper will outline a method for the data 

transmission between the independently parts of a SoC.  

In order to prepare students for the upcoming and current 

trend towards SoCs, a new master lecture is planned based 

on a Xilinx SoC with a corresponding development kit 

called “Zedboard”. It has lots of peripherals, e.g. a HDMI-

Interface and an Oled-Display. In the center of the board 

stand the Zynq-7000 SoC, which contains two CPU cores 

and a huge field-programmable-gate-array (FPGA).  

I. INTRODUCTION 

The Advanced Microcontroller Bus Architecture 
(AMBA) was developed by the British company ARM 
Limited. It is an open standard for the communication 
between independent parts of SoCs. The Advanced 
extensible Interface (AXI) is the most widely used 
interface of the AMBA. [1] 

The AXI interface is based on the master and slave 
communication principle and works in the full-duplex-
mode. At the same time, data can be sent and received. 
The AXI interface has two kind of types: AXI-full and 
AXI-lite. The lite is a simplified protocol version. It only 
utilizes the necessary control signals, it is easier to 
understand and saves area on the chip. The disadvantage 
is the missing burst mode. A burst mode is a data 
transmission that comprises several data words without 
initializing them separately. E.g. only the initial address of 
the first data word is transmitted, and for all following 
data words the memory address is incremented 
automatically.  

The following section explains the communication 
between the CPU as master and FPGA as slave using an 
AXI-lite interface. 

II. ILLUSTRATIVE OPERATION OF THE AXI INTERFACE 

The AXI interface is responsible for data transmission 
between two function blocks. These blocks can be two 
separate circuits on a FPGA, or a CPU and a FPGA.  
Figure 1 schematically illustrates data transfer between the 
master (CPU) and the slave (FPGA) on a Zynq-7000 SoC. 

CPU and FPGA parts are optically separated by a 
dashed line. Since the CPU acts as master, all data transfer 
requests are made by the CPU. As shown in Figure 1, the 
CPU memory space consists of three parts: RAM, PL 
(Programmable Logic), and IO peripherals, each having 
different base addresses. For the initialization of a 
transmission, only the PL (MAXI_GP0) register is read or 
written from the CPU point of view. MAXI_GP0 stands 
for Master AXI general purpose 0 register. However, in 
this area, there are no memory cells, such as a RAM 
memory. Address and data are directly passed to a module 
called "Master Interconnect for Slave Peripherals". This 
module serves as a "bridge station" between CPU and 
FPGA. It is responsible for the necessary handshakes and 
control signals.  

 

Figure 1.  Schematic representation of the data transfer using the AXI 

interface between CPU and FPGA 

The registers in the address area of the PL 
(MAXI_GP0) are physically located on the FPGA, but 
virtually on the CPU. From the viewpoint of the CPU, no 
difference is noticed - whether data is transferred between 
RAM or FPGA registers. 
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III. STRUCTURE OF THE AXI-LITE INTERFACE WITH 

ALL REQUIRED CONTROL SIGNALS 

The internal construction of the CPU understands if the 
address for the next memory operation is in the address 
range of the FPGA and will automatically contact the  
Master Interconnect for Slave Peripherals.  

This block is responsible for the handshake signals of 
the AXI interface. Table 1 lists all the signals needed for a 
data exchange. All signals in lower-case are generated by 
the slave (FPGA), all others preceded by a "S_" by the 
master (CPU). 

The signals "valid" and "ready" always serve as a 
handshake to transfer the data in the same category 
without errors. In total, there are six categories: In order to 
write data to a FPGA register, "write address", "write 
data" and "write validation" are required. To read an 
FPGA register, "read address" and "read data" are used. 
The global signals are necessary for both actions. 

The global signal S_ACLK is the clock signal. A 
100MHz clock is standardly used on the Zedboard. 
However, since the AXI interface protocol has no 
frequency limit, other frequencies are possible. The 
maximum transmission rate depends on the hardware 
specification. S_ARESETN is used to reset the bus. The 
remaining signals and their meanings will be explained in 
the next chapter. 

IV. CPU WRITES TO THE FPGA 

First, the CPU needs to initialize a write operation. In 
the following example the hexadecimal value 0x64 will be 
assigned to the address 0x43C00000. The C code looks 
like this: 

(u32 *)0x43C00000 = 0x64; 

The CPU sends the operation command to the "Master 
Interconnect for Slave Peripherals". It is responsible for 
the generation of the control signals and the correct 
transmission sequence. For writing to a PL-register "write 
address", "write data", and "write validation" categories 
from Table 1 are necessary. 

The bubbles in Figure 2 show the four states of a 
transmission. The control signals at the arrows are the 
conditions to reach the next state. They are all one bit 
wide. As shown in Figure 3, all signals are set to ‘0’ at the 
beginning of a transmission (state "bus inactive"). To 
initiate a writing operation, we need four signals: awready, 

S_AWVALID, wready and S_WVALID. The signals 
awready and wready are generated by the slave (written in 
lower-case letters). Awready "low" signals the master that 
the slave is ready for address transmission. Wready "low" 
indicates that the slave is ready to transmit the data. 

 
Figure 2.  The Moore machine describes the control signals, if the CPU 

writes data to the FPGA  

 
Figure 3.  Timing chart for a single data write operation from the CPU 

to the FPGA [3] 

The slave is automatically ready if the bus is inactive 
and waits for commands from the master. The master 
applies the address (0x43C00000) to the bus line 
S_AWADDR. This 32 bit wide signal is responsible for 
address transmission during a write operation. At the same 
time, the signal S_AWVALID is set to "high", which 
validates the address. The data is handled in a very similar 
way. The master applies the data (0x00000064) to the bus 
line S_WDATA and displays the validity for the slave 
using the S_WVALID signal. S_WSTRB is set in the 
same time step. This signal will be discussed in more 

TABLE I.   
SIGNALS OF THE AXI-LITE-INTERFACE [2] 

global read address read data 

S_ACLK S_ARVALD rvalid 

S_ARESETN arready S_READY 

 S_ARADDR rdata 

  rresp 

write address write data write validation 

S_AWVALID S_WVALID bvalid 

awready wready S_BREADY 

S_AWADDR S_WDATA bresp 

 S_WSTRB  
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detail later. Finally, the master state machine switches to 
"start of transmission" (see Figure 2). It sets the signal 
S_BREADY to "high", and waits for a response from the 
slave. 

Next, the slave needs to read the address and the data 
from the bus. The signal S_WSTRB is 0xF, so the 
complete data (0x00000064) is stored in the register with 
the address 0x43C00000. 

 

Figure 4.  Structure of the S_WSTRB signal 

Figure 4 shows the structure of the S_WSTRB signal, 
which is used for the memory operation. For a 32 bit wide 
data bus, it is 4 bit wide and responsible for validating the 
data. With the help of the S_WSTRB signal, single bytes 
can be transferred to a register. If the signal is 0xF, all four 
bytes are stored in the FPGA register. For a value of 0x9, 
the data bits of D[31:24] and D[07:00] are transferred to 
the register, and D[23:08] remains unchanged. Each bit of 
signal S_WSTRB tells the slave whether the 
corresponding byte of the data is to be stored or discarded.  

The slave has now transferred the value 0x00000064 to 
its own register 0x43C00000. It signals with awready or 
wready, that the address or data was received, 
respectively. Now the FSM reached the state "save bus 
data" in Figure 2. Finally, the status of the transmission is 
transmitted to the master before the state of the bus is 
reseted. 

The slave recognized by the S_BREADY signal, that 
the master is ready for a status transfer. Table 2 lists the 
different possibilities of a transfer. When a FPGA register 
is written, bresp signals the status of the transfer, the rresp 
signal is responsible for a read operation. 

There are four options: OKAY (0b00) stands for a 
perfect transfer with no errors. EXOKAY (0b01) is only 
used for exclusive transmissions. These are not integrated 
in the AXI-lite interface and are mentioned here only for 
the sake of completeness. SLVERR (0b10) stands for 
"Slave Error". This error is thrown when the master has 
sent a data transfer request to the slave, but an error has 
occurred with it. DECERR (0b11) is the abbreviation for 
"Decode error". This error occurs when the master wants 
to interfere an address that has not been assigned to a 
slave. [4] 

The bvalid signal indicates to the master that a valid 
bresp signal is present. In Figure 3, the timing chart, the 
bresp signal is 0b00, which indicates a successful transfer. 
This corresponds to the FSM state "status report of 
transmission" in Figure 2. Finally, all signals are set to 
"low" and the bus reached the inactive state again. The 
slave waits for a new request from the master. 

V. CPU READS FROM THE FPGA 

The read operation must be initialized by the CPU 
(master). In the previous chapter the value 0x64 was 
transferred to the register 0x43C00000. Now the register 
will be read from the CPU. In the C code, the read 
operation would look as follows:  

u32 registerContent = (u32 *)0x43C00000; 

The content of the register 0x43C00000 is assigned to 
the variable registerContent. The CPU sends the operation 
command to the "Master Interconnect for Slave 
Peripherals". It is responsible for the generation of the 
control signals and the sequence of the transmission. For 
writing to a PL-register, "read address" and "read data" 
categories from Table 1 are necessary. 

 

Figure 5.  The Moore machine describes the control signals, if the CPU 

reads data from the FPGA  

Figure 5 shows the sequence of a read operation of the 
FPGA register. First, the master is in the state of bus 
inactivity. All channels are "low". As in the previous 
example, all signals produced by the slave are lowercase. 
With arready "low" the slave signals that it is ready for an 
address transfer. While the bus is inactive, the slave waits 
for instructions of the master. The timing chart in Figure 6 
shows the exact sequence of a read operation. To 
initialize, the master specifies the address of the register to 
be read to the bus S_ARADDR. Simultaneously, the 
signal S_ARVALID is set to "high". It indicates the slave, 
that the address is valid. With the S_RREADY signal the 
master indicates that it is ready for receiving the data and 

TABLE II.   
CODING OF THE BRESP AND RRESP SIGNAL [4] 

rresp [1:0] 

bresp [1:0] 
status 

0b00 OKAY 

0b01 EXOKAY 

0b10 SLVERR 

0b11 DECERR 
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the status of the transmission. Now, the state "start of 
transmission" in Figure 5 is reached. The master puts all 
necessary data on the bus and waits for the slave to 
respond. 

 

Figure 6.  Timing chart for a single data read operation [5] 

In the first step, the slave receives the address of the 
register to be read. To receive no further addresses, 
arready set to "high". In Figure 5, the instantaneous state 
is "received address". 

As shown in the timing chart, the data of the register 
(0x43C00000) will be put on the bus in the next clock 
period The data channel rdata is assigned the value 
0x00000064. This corresponds to the value that was 
written in the previous chapter in the register. At the same 
time, the status of data transmission is passed to the 
master with the signal rresp. This signal is equivalent to 
the signal bresp of the write operation and is described in 
detail in the previous chapter. There are no changes at the 
signal rresp in the timing chart, because 0b00 stand for 
"OKAY" - a successful transfer. Rvalid confirms the 
master that the two signals rdata and rresp are valid. Now 
the state "valid data + status report of transmission" is 
reached (see Figure 5). 

The "Master interconnect for Slave Peripherals" 
receives the value of the register and outputs the data to 
the CPU. In the final step, all channels are set to "low". 
The bus returns to the idle-state and the slave waits until a 
new read request is send from the master. 

VI. CONCLUSION 

In modern systems with high performance demands a 
single processor core alone is usually insufficient. For 
example, complex graphical calculations require a 
separate Graphics Processing Unit (GPU). This paper 
outlines the ARM AXI interface, which allows a high-
speed data transmission between a CPU and independent 
digital circuits. These high-speed communication systems 
are the key for modern System-on-Chip (SoC) 
architectures. 
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